三维空间刚体运动1:旋转矩阵与变换矩阵(详解加代码示例)
序:本篇系列文章参照高翔老师《视觉SLAM十四讲从理论到实践》,讲解三维空间刚体运动,为读者打下坚实的数学基础。博文将原第三讲分为五部分来讲解,其中四元数部分较多较复杂,又分为四部分。如果读者急于实践,可直接阅读第五部分的机器人运动轨迹,此部分详细讲解了安装准备工作。此系列总体目录如下:
- 旋转矩阵和变换矩阵;
- 旋转向量表示旋转;
- 欧拉角表示旋转;
- 四元数包括以下部分:
4-1. 四元数表示变换;
4-2. 四元数线性插值方法:LinEuler/LinMat/Lerp/Nlerp/Slerp;
4-3. 四元数多点插值方法:Squad;
4-4. 四元数多点连续解析解插值方法:Spicv;
4-5. 四元数多点离散数值解插值方法:Sping。 - 实践:SLAM中显示机器人运动轨迹及相机位姿。
在正式开始之前,我想先分享学习体会。之前看SLAM,看到第六讲放弃了,无他,前边理解的不深刻,后边的越来越难以理解,学了一本强化学习之后,才静下心继续学SLAM。所以在此建议SLAM小伙伴们,高翔博士该讲的都在书里,只不过太过精简,不怕各位笑话,第三讲和第四讲反反复复来回看了四遍。所以学习SLAM的关键,就是温故而知新,多多体会总结,串联起前后相关的知识点,融会贯通才能理解后边的内容。
本博文首先介绍向量及其坐标表示,并介绍了向量间的运算;然后,使用欧式变换描述坐标系之间的运动,它由旋转和平移组成,旋转由旋转矩阵 S O ( 3 ) SO(3) SO(3)描述,而平移直接由一个 R 3 \mathbb{R}^{3} R3向量描述;最后,如果将旋转和平移放在一个矩阵中,就形成了变换矩阵 S E ( 3 ) SE(3) SE(3),陌生符号会在下文讲解。最后在欧氏变换基础上,讲解了相似、仿射和射影变换。
1. 点、向量和坐标系
这里讲一下刚体、点、向量、坐标和坐标系、内积和外积的概念,为了引出 a ∧ a^{\wedge } a∧。
刚体:刚体是形状和大小不发生变化的物体,我们日常生活的空间是三维的,所以一个空间点的位置可以由3个坐标指定,而刚体不光有位置,还有自身的姿态,姿态是指物体的朝向。
点:点是空间中的基本元素,没有长度没有体积,两个点连接起来,构成了向量。
向量:可以看成从某点指向另一点的箭头,他是空间中的一样东西,向量在坐标系中表示为坐标,同一向量在不同坐标系中的坐标不同。
坐标:假设在线性空间中,找到了该空间的一组基(就是张成这个空间的一组线性无关的向量,也称为基底),记为
(
e
1
,
e
2
,
e
3
)
(e_{1},e_{2},e_{3})
(e1,e2,e3),那么任意向量
a
a
a在这组基下就有一个坐标:
a
=
[
e
1
,
e
2
,
e
3
]
[
a
1
a
2
a
3
]
=
a
1
e
1
+
a
2
e
2
+
a
3
e
3
.
(1.1)
a = [e_{1},e_{2},e_{3}]\begin{bmatrix} a_{1}\\ a_{2}\\ a_{3} \end{bmatrix} = a_{1}e_{1} + a_{2}e_{2} + a_{3}e_{3}. \tag{1.1}
a=[e1,e2,e3]
a1a2a3
=a1e1+a2e2+a3e3.(1.1)这里
(
a
1
,
a
2
,
a
3
)
T
(a_{1},a_{2},a_{3})^{T }
(a1,a2,a3)T称为
a
a
a在此基下的坐标。坐标的具体取值,一是和向量本身有关,二是和坐标系(基)的选取有关。注意:本文的向量均为列向量,与一般数学书籍相同。
坐标系:通常由3个正交的坐标轴组成,当给定
x
x
x和
y
y
y轴,
z
z
z轴就可以通过右手(或左手)法则由
x
×
y
x \times y
x×y定义出来。根据定义方式不同,又分为左手系和右手系。右手系中,大拇指指向
x
x
x轴正向,食指指向
y
y
y轴正向,中指所指方向即为
z
z
z轴方向。大部分3D程序库使用右手系(如OpenGL、3D Max等),也有部分库使用左手系(如Unity、Direct3D等)。
内积:向量的数乘、加减法不再赘述。通常意义下的内积可以写成:
a
⋅
b
=
a
T
b
=
∑
i
=
1
3
a
i
b
i
=
∣
a
∣
∣
b
∣
c
o
s
⟨
a
,
b
⟩
.
(1.2)
a\cdot b= a^{T}b= \sum_{i=1}^{3}a_{i}b_{}i= \left | a \right |\left | b \right |cos \left \langle a,b \right \rangle. \tag{1.2}
a⋅b=aTb=i=1∑3aibi=∣a∣∣b∣cos⟨a,b⟩.(1.2)其中
⟨
a
,
b
⟩
\left \langle a,b \right \rangle
⟨a,b⟩指向量
a
,
b
a,b
a,b的夹角。内积也可以描述向量间的投影关系。
外积:外积是这个样子:
a
×
b
=
∥
e
1
e
2
e
3
a
1
a
2
a
3
b
1
b
2
b
3
∥
=
[
a
2
b
3
−
a
3
b
2
a
3
b
1
−
a
1
b
3
a
1
b
2
−
a
2
b
1
]
=
[
0
−
a
3
a
2
a
3
0
−
a
1
−
a
2
a
1
0
]
b
=
d
e
f
a
∧
b
.
(1.3)
a\times b= \begin{Vmatrix} e_{1} & e_{2} & e_{3}\\ a_{1} & a_{2} & a_{3}\\ b_{1} & b_{2} & b_{3} \end{Vmatrix}= \begin{bmatrix} a_{2}b_{3}-a_{3}b_{2}\\ a_{3}b_{1}-a_{1}b_{3}\\ a_{1}b_{2}-a_{2}b_{1} \end{bmatrix}= \begin{bmatrix} 0 & -a_{3} & a_{2}\\ a_{3} & 0 & -a_{1}\\ -a_{2} & a_{1} & 0 \end{bmatrix}b \xlongequal[]{def} a^{\wedge }b. \tag{1.3}
a×b=
e1a1b1e2a2b2e3a3b3
=
a2b3−a3b2a3b1−a1b3a1b2−a2b1
=
0a3−a2−a30a1a2−a10
bdefa∧b.(1.3)外积的结果是一个向量,它的方向垂直于这两个向量,大小为
∣
a
∣
∣
b
∣
s
i
n
⟨
a
,
b
⟩
\left | a \right |\left | b \right |sin \left \langle a,b \right \rangle
∣a∣∣b∣sin⟨a,b⟩,是两个向量张成的四边形的有向面积。对于外积运算,引入
∧
^{\wedge }
∧符号,可以把
a
a
a写成一个矩阵,它是一个反对称矩阵(
A
T
=
−
A
A^{T}=-A
AT=−A)。你可以将
∧
^{\wedge }
∧记成一个反对称符号,读作hat,这样就把外积
a
×
b
a\times b
a×b写成了矩阵与向量的乘法
a
∧
b
a^{\wedge}b
a∧b,把它变成了线性运算。这个符号非常重要,会经常用到,并且此符号是一个一一映射,意味着任意向量都对应着唯一的一个反对称矩阵,反之亦然:
a
∧
=
[
0
−
a
3
a
2
a
3
0
−
a
1
−
a
2
a
1
0
]
.
(1.4)
a^{\wedge }= \begin{bmatrix} 0 & -a_{3} & a_{2}\\ a_{3} & 0 & -a_{1}\\ -a_{2} & a_{1} & 0 \end{bmatrix}. \tag{1.4}
a∧=
0a3−a2−a30a1a2−a10
.(1.4)
2.坐标系间的欧式变换
此节是整篇甚至整本书的重中之重,请重点要理解掌握。博主也会极力详细讲清楚。首先,由刚体运动引出欧式变换。
我们经常在实际场景中定义各种各样的坐标系,如果考虑运动的机器人(即相机),那么常见的做法是设定一个惯性坐标系(或者叫世界坐标系),可以认为它是固定不动的。这时就会有这样的疑问:相机视野中某个向量p,它在相机坐标系下的坐标为 p c p_{c} pc,而在世界坐标系下看,其坐标为 p w p_{w} pw,那么,这两个坐标之间是如何转换的呢?这时,需要先得到该点针对机器人坐标系的坐标值,再根据机器人位姿变换到世界坐标系中,可以通过数学手段的变换矩阵 T T T来描述它。
刚体运动:两个坐标系之间的运动变换由一个旋转加上一个平移组成,这种运动就是刚体运动。相机运动就是一个刚体运动。刚体运动过程中,同一个向量在各个坐标系下的长度和夹角都不会发生变化。此时,我们说手机坐标系和世界坐标系之间,相差了一个欧氏变换(Euclidean Transform)。欧氏变换由旋转和平移组成。
2.1 旋转
我们首先考虑旋转。由旋转引出旋转矩阵和特殊正交群
S
O
(
n
)
SO(n)
SO(n)。
旋转矩阵:设某个单位正交基
e
=
(
e
1
,
e
2
,
e
3
)
e=(e_{1},e_{2},e_{3})
e=(e1,e2,e3)经过一次旋转变成了
e
′
=
(
e
1
′
,
e
2
′
,
e
3
′
)
e{}'=(e_{1}{}',e_{2}{}',e_{3}{}')
e′=(e1′,e2′,e3′)。那么,对于同一个向量
a
a
a,它在两个坐标系下的坐标为
[
a
1
,
a
2
,
a
3
]
[a_{1},a_{2},a_{3}]
[a1,a2,a3]和
[
a
1
′
,
a
2
′
,
a
3
′
]
[a_{1}{}',a_{2}{}',a_{3}{}']
[a1′,a2′,a3′],因为向量本身没变,所以根据坐标定义,有:
[
e
1
,
e
2
,
e
3
]
[
a
1
a
2
a
3
]
=
[
e
1
′
,
e
2
′
,
e
3
′
]
[
a
1
′
a
2
′
a
3
′
]
.
(2.1)
[e_{1},e_{2},e_{3}]\begin{bmatrix} a_{1}\\ a_{2}\\ a_{3} \end{bmatrix} = [e_{1}{}',e_{2}{}',e_{3}{}']\begin{bmatrix} a_{1}{}'\\ a_{2}{}'\\ a_{3}{}' \end{bmatrix} . \tag{2.1}
[e1,e2,e3]
a1a2a3
=[e1′,e2′,e3′]
a1′a2′a3′
.(2.1)为了描述两个坐标之间的关系,对上式两边同时左乘
e
T
e^{T}
eT,那么左侧系数变为单位矩阵,所以:
[
a
1
a
2
a
3
]
=
[
e
1
T
e
1
′
e
1
T
e
2
′
e
1
T
e
3
′
e
2
T
e
1
′
e
2
T
e
2
′
e
2
T
e
3
′
e
3
T
e
1
′
e
3
T
e
2
′
e
3
T
e
3
′
]
[
a
1
′
a
2
′
a
3
′
]
=
d
e
f
R
a
′
.
(2.2)
\begin{bmatrix} a_{1}\\ a_{2}\\ a_{3} \end{bmatrix} = \begin{bmatrix} e_{1}^{T}e_{1}{}' & e_{1}^{T}e_{2}{}' & e_{1}^{T}e_{3}{}'\\ e_{2}^{T}e_{1}{}' & e_{2}^{T}e_{2}{}' & e_{2}^{T}e_{3}{}'\\ e_{3}^{T}e_{1}{}' & e_{3}^{T}e_{2}{}' & e_{3}^{T}e_{3}{}' \end{bmatrix}\begin{bmatrix} a_{1}{}'\\ a_{2}{}'\\ a_{3}{}' \end{bmatrix} \xlongequal{def} \mathbf{R}a{}'. \tag{2.2}
a1a2a3
=
e1Te1′e2Te1′e3Te1′e1Te2′e2Te2′e3Te2′e1Te3′e2Te3′e3Te3′
a1′a2′a3′
defRa′.(2.2)矩阵
R
\mathbf{R}
R由两组基的内积组成,刻画了旋转前后同一个向量的坐标变换关系,矩阵
R
\mathbf{R}
R描述了旋转本身,因此称为旋转矩阵(Rotation Matrix)。同时,该矩阵各分量是两个坐标系基的内积,所以实际上是各基向量夹角的余弦值,故也叫方向余弦矩阵(Direction Cosine Matrix)。
同时,旋转矩阵
R
\mathbf{R}
R也是正交矩阵,它的逆(即转置)描述了一个相反的旋转。按照上面的定义方式,有:
a
′
=
R
−
1
a
=
R
T
a
.
(2.3)
a{}'=\mathbf{R}^{-1}a=\mathbf{R}^{T}a. \tag{2.3}
a′=R−1a=RTa.(2.3)显然,
R
−
1
\mathbf{R}^{-1}
R−1和
R
T
\mathbf{R}^{T}
RT刻画了一个相反的旋转。
特殊正交群 S O ( n ) SO(n) SO(n):旋转矩阵 R R R是一个行列式为1的正交矩阵(即 A − 1 = A T A^{-1} = A^{T} A−1=AT),反之,行列式为1的正交矩阵也是一个旋转矩阵。所以,可以将 n n n维旋转矩阵的集合定义如下: S O ( n ) = { R ∈ R n × n ∣ R R T = I , d e t ( R ) = 1 } . (2.4) SO(n)= \left \{ {\mathbf{R}\in \mathbb{R}^{n\times n}|\mathbf{R}\mathbf{R}^{T}= \mathbf{I},det(\mathbf{R})= 1} \right \}. \tag{2.4} SO(n)={R∈Rn×n∣RRT=I,det(R)=1}.(2.4) S O ( n ) SO(n) SO(n)是特殊正交群(Special Orthogonal Group)的意思。这个集合由 n n n维空间的旋转矩阵,特别的, S O ( 3 ) SO(3) SO(3)就是指三维空间的旋转。通过旋转矩阵,可以直接谈论两个坐标系之间的旋转变换,而不用再从基谈起。
2.2 平移
在欧式变换中,除了旋转还有平移。
考虑世界坐标系中的向量
a
a
a,经过一次旋转矩阵
R
R
R和一个平移向量
t
t
t后,得到
a
′
a{}'
a′,那么把旋转和平移合到一起,有:
a
′
=
R
a
+
t
.
(2.5)
\mathbf{a{}' }= \mathbf{R}\mathbf{a} + \mathbf{t}. \tag{2.5}
a′=Ra+t.(2.5)通过上式,我们用一个旋转矩阵
R
R
R和一个平移向量
t
t
t完整的描述了一个欧式空间的坐标变换。
同时,这里对下标做一下说明。实际当中,我们会定义坐标系1,坐标系2,那么向量 a a a在两个坐标系下的坐标为 a 1 , a 2 a_{1},a_{2} a1,a2,它们之间的关系应该是: a 1 = R 12 a 2 + t 12 . (2.6) a_{1} = R_{12}a_{2}+t_{12}. \tag{2.6} a1=R12a2+t12.(2.6)这里的 R 12 R_{12} R12是指“把坐标系2的向量变换到坐标系1”,即“从2到1的旋转矩阵”。由于向量乘在矩阵的右边,所以它的下标是从右读到左的。关于平移向量 t 12 t_{12} t12,它实际对应的是坐标系1原点指向坐标系2原点的向量,在坐标系1下取的坐标,所以建议读者把它记作“从1到2的向量”,它的下标是从左读到右的,但它并不等于 − t 21 -t_{21} −t21。
3.齐次坐标和变换矩阵
对于式(2.5)所表达的欧式空间的旋转和平移还存在一个问题:这里的变换关系是一个线性关系。假设我们进行了两次变换: R 1 , t 1 R_{1},t_{1} R1,t1和 R 2 , t 2 R_{2},t_{2} R2,t2: b = R 1 a + t 1 , c = R 2 b + t 2 . (3.1) b = R_{1}a+t_{1}, c = R_{2}b+t_{2}. \tag{3.1} b=R1a+t1,c=R2b+t2.(3.1)那么,从 a a a到 c c c的变换为: c = R 2 ( R 1 a + t 1 ) + t 2 . (3.2) c = R_{2}(R_{1}a+t_{1})+t_{2}.\tag{3.2} c=R2(R1a+t1)+t2.(3.2)这样的形式在变换多次之后会显得很啰嗦。因此引入齐次坐标和变换矩阵。
齐次坐标:这里使用一个数学技巧:我们在一个三维向量的末尾添加1,将其变为四维向量
a
~
=
[
a
1
]
\tilde{a}= \begin{bmatrix} a\\ 1 \end{bmatrix}
a~=[a1],称为齐次坐标。齐次坐标表示法就是用
n
+
1
n+1
n+1维向量表示一个
n
n
n维向量。
n
n
n维空间中的点的位置向量用非齐次坐标表示为
(
P
1
,
P
2
.
.
.
P
n
)
(P_{1}, P_{2}...P_{n})
(P1,P2...Pn),它具有
n
n
n个分量且唯一。使用齐次坐标表示时,表示为
(
h
P
1
,
h
P
2
.
.
.
h
P
n
,
h
)
,
(hP_{1}, hP_{2}...hP_{n},h),
(hP1,hP2...hPn,h),该向量有
n
+
1
n+1
n+1个坐标分量且不唯一。
对于h,通常使
h
=
1
h=1
h=1。如果
h
≠
1
h\neq 1
h=1且
h
≠
0
h\neq 0
h=0,使用h除以齐次坐标各分量,这一方法称为齐次坐标的规范化。如果
h
=
0
h=0
h=0,该点表示一个无穷远点。三元组
(
0
,
0
,
0
)
(0,0,0)
(0,0,0)不表示任何点。原点表示为
(
0
,
0
,
0
,
1
)
(0,0,0,1)
(0,0,0,1)。
变换矩阵:对于齐次坐标,我们可以把旋转和平移写在一个矩阵里,使得整个关系变成线性关系: a ~ = [ a ′ 1 ] = [ R t 0 T 1 ] [ a 1 ] = d e f T [ a 1 ] = [ R a + t 1 ] . (3.3) \tilde{a}= \begin{bmatrix} a{}'\\ 1 \end{bmatrix}= \begin{bmatrix} R & t\\ 0^{T} & 1 \end{bmatrix}\begin{bmatrix} a\\ 1 \end{bmatrix} \xlongequal{def} T\begin{bmatrix} a\\ 1 \end{bmatrix} = \begin{bmatrix} Ra+t\\ 1 \end{bmatrix}. \tag{3.3} a~=[a′1]=[R0Tt1][a1]defT[a1]=[Ra+t1].(3.3)在该式中,矩阵 T T T称为变换矩阵(Transform Matrix)。
那么依靠齐次坐标和变换矩阵,两次变换的叠加就可以有很好的形式: b ~ = T 1 a ~ , c ~ = T 2 b ~ ⇒ c ~ = T 2 T 1 a ~ . (3.4) \tilde{b}= T_{1}\tilde{a}, \tilde{c}= T_{2}\tilde{b} \Rightarrow \tilde{c}= T_{2}T_{1}\tilde{a} . \tag{3.4} b~=T1a~,c~=T2b~⇒c~=T2T1a~.(3.4)但是区分齐次和非齐次坐标的符号令我们厌烦,所以,在不引起歧义的情况下,以后直接把它写成 b = T a b=Ta b=Ta的样子,默认其中进行了齐次坐标的转换。
特殊欧式群 S E ( 3 ) SE(3) SE(3):对于变换矩阵T,它具有比较特别的结构:左上角为旋转矩阵,右上角为平移向量,左下角为 0 0 0向量,右下角为1。这种矩阵又称为特殊欧式群(Special Euclidean Group): S E ( 3 ) = { T E = [ R t 0 T 1 ] ∈ R 4 × 4 ∣ R ∈ S O ( 3 ) , t ∈ R 3 } . (3.5) SE(3)= \left \{ T_{E}= \begin{bmatrix} R & t\\ 0^{T} & 1 \end{bmatrix} \in \mathbb{R}^{4\times 4}|R\in SO(3), t\in \mathbb{R}^{3}\right \}.\tag{3.5} SE(3)={TE=[R0Tt1]∈R4×4∣R∈SO(3),t∈R3}.(3.5)与 S O ( 3 ) SO(3) SO(3)一样,求解该矩阵的逆 T − 1 T^{-1} T−1,表示一个反向的变换: T − 1 = [ R T − R T t 0 T 1 ] . (3.6) T^{-1}= \begin{bmatrix} R^{T} & -R^{T}t\\ 0^{T} & 1 \end{bmatrix}. \tag{3.6} T−1=[RT0T−RTt1].(3.6)同样,我们用 T 12 T_{12} T12这样的写法表示从2到1的变换。在不引起歧义的情况下,以后不可以区别齐次坐标与普通坐标的符号,默认使用的是符合运算法则的那一种,因为齐次坐标与非齐次坐标之间的转换事实上非常容易。
4. 相似、仿射和射影变换
除了欧式变换,3D空间还存在其他几种变换方式,只不过欧氏变换是最简单的。它们一部分和测量几何有关,因为在之后的讲解中可能会提到,所以先罗列出来。欧氏变换保持了向量的长度和夹角,相当于我们把一个刚体原封不动地进行了移动或旋转,不改变它自身的样子。但现实中由于角度问题,总会发生畸变,所以需要相似、仿射、射影变换,它们都会改变物体的外形。它们都有类似的矩阵表示。
4.1 相似变换
相似变换比欧式变换多了一个自由度,它允许物体进行均匀缩放,其矩阵表示为:
T
S
=
[
s
R
t
0
T
1
]
(4.1)
T_{S}=\begin{bmatrix} sR & t\\ 0^{T} &1 \end{bmatrix}\tag{4.1}
TS=[sR0Tt1](4.1)
注意,旋转部分多了一个缩放因子
s
s
s,它表示我们在对向量旋转之后,可以在
x
,
y
,
z
x,y,z
x,y,z三个坐标上进行均匀缩放。由于含有缩放,相似变换不再保持图形的面积不变。你可以想象一个边长为1的立方体经过相似变换后,变成边长为10的立方体。
三维相似变换的集合也叫做相似变换群,记作
S
i
m
(
3
)
Sim(3)
Sim(3)。
4.2 仿射变换
仿射变换的矩阵形式如下: T A = [ A t 0 T 1 ] (4.2) T_{A}=\begin{bmatrix} A & t\\ 0^{T} &1 \end{bmatrix}\tag{4.2} TA=[A0Tt1](4.2)与欧氏变换不同二十,仿射变换只要求 A A A是一个可逆矩阵,而不必是正交矩阵。仿射变换也叫正交投影,经过仿射变换之后,立方体就不再是方的了,但是各个方面仍然是平行四边形。
4.3 射影变换
射影变换是最一般的变换,又称为投影变换。它的矩阵形式为:
T
P
=
[
A
t
a
T
v
]
(4.3)
T_{P}=\begin{bmatrix} A & t\\ a^{T} &v \end{bmatrix}\tag{4.3}
TP=[AaTtv](4.3)它的左上角为可逆矩阵
A
A
A,右上角为平移
t
t
t,左下角为缩放
a
T
a^{T}
aT,右下角为整体的变换比例
v
v
v。由于采用了齐次坐标,当
v
≠
0
v\neq 0
v=0时,我们可以对整个矩阵除以
v
v
v得到一个右下角为1的矩阵;否则当
v
=
0
v=0
v=0时,得到右下角为0的矩阵。因此,2D的射影变换一共有8个自由度,3D则共有15个自由度。
射影变换是讲过的变换中,形式最一般的。从真实世界到相机照片的变换可以看成一个射影变换。读者可以想象一个原本方形的地板砖,在照片中是什么样子?首先,它不再是方形的,由于近大远小的关系,它甚至不是平行四边形,而是一个不规则的四边形。这也是位姿中常遇到的情况。
4.4 总结
下面对比总结下讲到的四种变换的性质。注意在“不变性质”中,从上到下是有包含关系的。例如,欧氏变换除了保体积,也具有保平行、相交等性质。
变换名称 | 矩阵形式 | 自由度 | 不变性质 | 变换形态 |
---|---|---|---|---|
欧氏变换 | T E = [ R t 0 T 1 ] T_{E}=\begin{bmatrix} R & t\\ 0^{T} &1 \end{bmatrix} TE=[R0Tt1] | 6 | 长度、夹角、体积 | 位置,方向改变 |
相似变换 | T S = [ s R t 0 T 1 ] T_{S}=\begin{bmatrix} sR & t\\ 0^{T} &1 \end{bmatrix} TS=[sR0Tt1] | 7 | 体积比 | 按比例缩放 |
仿射变换 | T A = [ A t 0 T 1 ] T_{A}=\begin{bmatrix} A & t\\ 0^{T} &1 \end{bmatrix} TA=[A0Tt1] | 12 | 平行性、体积比 | 正交投影,平行性不变 |
射影变换 | T P = [ A t a T v ] T_{P}=\begin{bmatrix} A & t\\ a^{T} &v \end{bmatrix} TP=[AaTtv] | 15 | 接触平面的相交和相切 | 大小、平行性均发生改变 |
从真实世界到相机照片的变换是一个射影变换。如果相机的焦距为无穷远,那么这个变换为仿射变换。在详细学习相机模型之前,只要对它们有个大致了解即可。
5.实践:Eigen
本节讲解如何使用Eigen表示矩阵和向量,随后引申至旋转矩阵与变换矩阵的运算。KDevelop工程形式的代码在附件中。
Eigen:Eigen是一个C++开源线性代数库,它提供了快速的有关矩阵的线性代数运算,还包括解方程等功能。许多上层的软件库也使用Eigen进行矩阵运算,包括g2o、Sophus等。与其他库相比,Eigen的特殊之处在于,它是一个纯用头文件搭建起来的库,这意味着你只能找到它的头文件,而没有类似.so或.a的二进制文件。在使用时,只需引入头文件即可,不需要链接库文件。例程只是介绍了基本的矩阵运算,你可以通过Eigen官网教程学习更多Eigen知识。
如果没有安装Eigen,请输入以下命令进行安装:
sudo apt install libeigen3-dev
下面写一段代码来实际练习Eigen的使用(已添加注释):
#include<iostream>
using namespace std;
#include<ctime>
#include<eigen3/Eigen/Core>
#include<eigen3/Eigen/Dense> //稠密矩阵的代数运算,如逆、特征值等
using namespace Eigen;
#define MATRIX_SIZE 50
int main(int argc, char **argv){
//Eigen中所有向量和矩阵都是Eigen::Matrix,它是一个模板类,前三个参数为数据类型、行、列。下式为声明一个2*3的float矩阵
Matrix<float, 2, 3> matrix_23f;
//同时,Eigen通过typedef提供了许多内置类型,不过底层仍是Eigen::Matrix,例如Vector3d实质上是Eigen::Matrix<double, 3, 1>,即三维向量。
Vector3d v_3d;
Matrix<float, 3, 1> matrix_31f;
Matrix3d matrix_33d = Matrix3d::Zero();
//如果不确定大小,可使用动态大小的矩阵,Matrix<double, Dynamic, Dynamic>与MatrixXd相同。
Matrix<double, Dynamic, Dynamic> matrix_dynamic;
MatrixXd matrix_x;
//下面是对Eigen矩阵的操作
//输入数据进行初始化
matrix_23f<<1,2,3,4,5,6;
cout<<"matrix 2*3 from 1 to 6:\n"<<matrix_23f<<endl;
//用()访问矩阵中的元素
cout<<"print matrix 2*3:"<<endl;
for (int i=0; i<2; i++) {
for (int j=0; j<3; j++) {
cout<<matrix_23f(i, j)<<"\t";
}
cout<<endl;
}
v_3d << 3,2,1;
matrix_31f<<4,5,6;
//在Eigen中,不能混合两种不同类型的矩阵,必须进行显式转换。同样,不能搞混维度
Matrix<double, 2, 1> result = matrix_23f.cast<double>() * v_3d;
cout<<"[1,2,3;4,5,6]*[3,2,1]="<<result.transpose()<<endl;
Matrix<float, 2, 1> result2 = matrix_23f * matrix_31f;
cout<<"[1,2,3;4,5,6]*[4,5,6]="<<result2.transpose()<<endl;
//同样,不能搞混维度,下面是个错误例子。当你在编译程序,出现莫名其妙的错误时,请首先仔细检查你所进行运算矩阵的维度,这点相当重要。
//Eigen::Matrix<double, 2, 3> result_wrong_dimension = matrix_23f.cast<double>()*v_31d;
//一些矩阵运算
matrix_33d = Matrix3d::Random(); //随机数矩阵
cout<<"random matrix: \n"<<matrix_33d<<endl;
cout<<"transpose: \n"<<matrix_33d.transpose()<<endl; //转置
cout<<"sum: "<<matrix_33d.sum()<<endl; //各元素和
cout<<"trace: "<<matrix_33d.trace()<<endl; //迹
cout<<"times 10: \n"<<10 * matrix_33d<<endl; //数乘
cout<<"inverse: \n"<<matrix_33d.inverse()<<endl; //逆
cout<<"det: "<<matrix_33d.determinant()<<endl; //行列式
//特征值和特征向量,实对称矩阵可保证对角化成功。
SelfAdjointEigenSolver<Matrix3d> eigen_solver(matrix_33d.transpose()*matrix_33d);
cout<<"Eigen values=\n"<<eigen_solver.eigenvalues()<<endl;
cout<<"Eigen vectors=\n"<<eigen_solver.eigenvectors()<<endl;
//解方程,这里求解方程matrix_NN * x = v_N1d
Matrix<double, MATRIX_SIZE, MATRIX_SIZE> matrix_NN = MatrixXd::Random(MATRIX_SIZE, MATRIX_SIZE);
matrix_NN = matrix_NN * matrix_NN.transpose();
Matrix<double, MATRIX_SIZE, 1> v_N1d = MatrixXd::Random(MATRIX_SIZE, 1);
//计时
clock_t time_stt = clock();
//直接求逆,运算量大
Matrix<double, MATRIX_SIZE, 1> x = matrix_NN.inverse()*v_N1d;
cout<<"time of normal inverse is "<<1000*(clock()-time_stt)/(double)CLOCKS_PER_SEC<<"ms"<<endl;
cout<<"x = "<<x.transpose()<<endl;
time_stt = clock();
//通常用矩阵分解来求解,例如QR分解,速度会快很多
x = matrix_NN.colPivHouseholderQr().solve(v_N1d);
cout<<"time of Qr decomposition is "<<1000*(clock()-time_stt)/(double)CLOCKS_PER_SEC<<"ms"<<endl;
cout<<"x = "<<x.transpose()<<endl;
time_stt = clock();
//对于正定矩阵,还可以用cholesky分解来解方程
x = matrix_NN.ldlt().solve(v_N1d);
cout<<"time of ldlt decomposition is "<<1000*(clock()-time_stt)/(double)CLOCKS_PER_SEC<<"ms"<<endl;
cout<<"x = "<<x.transpose()<<endl;
time_stt = clock();
//此外还有lu分解
x = matrix_NN.lu().solve(v_N1d);
cout<<"time of lu decomposition is "<<1000*(clock()-time_stt)/(double)CLOCKS_PER_SEC<<"ms"<<endl;
cout<<"x = "<<x.transpose()<<endl;
}
CMakeLists.txt文件内容如下:
cmake_minimum_required(VERSION 3.0)
project(rigidMotion)
add_executable(useEigen useEigen.cpp)
set(CMAKE_BUILD_TYPE "Debug")
编译好程序后,运行它,可以看到各矩阵运算结果如下:
matrix 2*3 from 1 to 6:
1 2 3
4 5 6
print matrix 2*3:
1 2 3
4 5 6
[1,2,3;4,5,6]*[3,2,1]=10 28
[1,2,3;4,5,6]*[4,5,6]=32 77
random matrix:
0.680375 0.59688 -0.329554
-0.211234 0.823295 0.536459
0.566198 -0.604897 -0.444451
transpose:
0.680375 -0.211234 0.566198
0.59688 0.823295 -0.604897
-0.329554 0.536459 -0.444451
sum: 1.61307
trace: 1.05922
times 10:
6.80375 5.9688 -3.29554
-2.11234 8.23295 5.36459
5.66198 -6.04897 -4.44451
inverse:
-0.198521 2.22739 2.8357
1.00605 -0.555135 -1.41603
-1.62213 3.59308 3.28973
det: 0.208598
Eigen values=
0.0242899
0.992154
1.80558
Eigen vectors=
-0.549013 -0.735943 0.396198
0.253452 -0.598296 -0.760134
-0.796459 0.316906 -0.514998
time of normal inverse is 1.967ms
x = -55.7896 -298.793 130.113 -388.455 -159.312 160.654 -40.0416 -193.561 155.844 181.144 185.125 -62.7786 19.8333 -30.8772 -200.746 55.8385 -206.604 26.3559 -14.6789 122.719 -221.449 26.233 -318.95 -78.6931 50.1446 87.1986 -194.922 132.319 -171.78 -4.19736 11.876 -171.779 48.3047 84.1812 -104.958 -47.2103 -57.4502 -48.9477 -19.4237 28.9419 111.421 92.1237 -288.248 -23.3478 -275.22 -292.062 -92.698 5.96847 -93.6244 109.734
time of Qr decomposition is 2.409ms
x = -55.7896 -298.793 130.113 -388.455 -159.312 160.654 -40.0416 -193.561 155.844 181.144 185.125 -62.7786 19.8333 -30.8772 -200.746 55.8385 -206.604 26.3559 -14.6789 122.719 -221.449 26.233 -318.95 -78.6931 50.1446 87.1986 -194.922 132.319 -171.78 -4.19736 11.876 -171.779 48.3047 84.1812 -104.958 -47.2103 -57.4502 -48.9477 -19.4237 28.9419 111.421 92.1237 -288.248 -23.3478 -275.22 -292.062 -92.698 5.96847 -93.6244 109.734
time of ldlt decomposition is 0.667ms
x = -55.7896 -298.793 130.113 -388.455 -159.312 160.654 -40.0416 -193.561 155.844 181.144 185.125 -62.7786 19.8333 -30.8772 -200.746 55.8385 -206.604 26.3559 -14.6789 122.719 -221.449 26.233 -318.95 -78.6931 50.1446 87.1986 -194.922 132.319 -171.78 -4.19736 11.876 -171.779 48.3047 84.1812 -104.958 -47.2103 -57.4502 -48.9477 -19.4237 28.9419 111.421 92.1237 -288.248 -23.3478 -275.22 -292.062 -92.698 5.96847 -93.6244 109.734
time of lu decomposition is 0.787ms
x = -55.7896 -298.793 130.113 -388.455 -159.312 160.654 -40.0416 -193.561 155.844 181.144 185.125 -62.7786 19.8333 -30.8772 -200.746 55.8385 -206.604 26.3559 -14.6789 122.719 -221.449 26.233 -318.95 -78.6931 50.1446 87.1986 -194.922 132.319 -171.78 -4.19736 11.876 -171.779 48.3047 84.1812 -104.958 -47.2103 -57.4502 -48.9477 -19.4237 28.9419 111.421 92.1237 -288.248 -23.3478 -275.22 -292.062 -92.698 5.96847 -93.6244 109.734
附件包含了第三讲所有代码。
后续会介绍刚体运动第二部分:旋转向量和欧拉角,以及第三部分:四元数表示旋转。请继续学习,欢迎留言讨论,你的关注是我更新下去的动力。
本文基于《视觉SLAM十四讲:从理论到实践》和《Quaternions, Interpolation and Animation》编写,但相对于原文会适当精简,同时为便于全面理解,会收集其他网络好文,根据作者理解,加入一些注解和扩展知识点,如果您觉得还不错,请一键四连(点赞关注收藏评论),让更多的人看到。
参考文献:
- 《视觉SLAM十四讲:从理论到实践》,高翔、张涛等著,中国工信出版社